A family of regula falsi root-finding methods

Sérgio Galdino
Polytechnic School of Pernambuco University
Rua Benfica, 455 - Madalena
50.750-470 - Recife - PE - Brazil
Email: galdino@poli.br

Abstract

A family of regula falsi methods for finding a root ξ of a nonlinear equation $f(x)=0$ in the interval $[a, b]$ is studied in this paper. The Illinois, Pegasus, Anderson \& Björk and more nine new proposed methods have been tested on a series of examples. The new methods, inspired on Pegasus procedure, are pedagogically important algorithms. The numerical results empirically show that some of new methods are very effective. Index Terms-regula ralsi, root finding, nonlinear equations.

I. Introduction

Is not so hard the design of heuristic procedures to solve a problem using numerical algorithms. The main drawback of this attitude is that you can be rediscovering the wheel. The famous Halley's iteration method [1] ${ }^{1}$, have the distinction of being the most frequently rediscovered iterative method [2]. The Halley iteration formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\left(1-\frac{f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}{2 \cdot f^{\prime}\left(x_{n}\right)^{2}}\right)^{-1}
$$

The term in brackets is the correction of the NewtonRaphson method. Halley's method will yield cubic convergence at simple zeros of $f(x)$.

An attempt to create an useful numerical algorithm is try to improve the characteristics of already existent algorithm. The methods of Illinois [3] and Pegasus [4] are typical samples of improvements for the Regula Falsi method (false-position method) in order to solve fixed point retention problem. This is because once an interval has been reached on which the $f(x)$ is (monotonically) increasing or decreasing, one of end points is always retained. Xinyuan Wu, Zuhe Shen and Jianlin Xia [5] stated have developed a new root finding with global convergence for enclosing simple zeros x^{*} of nonlinear equation, which improves regula falsi method such that both the sequence of diameters $\left(b_{n}-a_{n}\right)$ and the iterative sequence $\left(x_{n}-x^{*}\right)$ are quadratically convergent to zero. Jinhai Chen and Weiguo Li [6], [7] give a class of regula falsi iterative formulas for solving nonlinear equations where both the sequences of diameters and iterative points sequence are quadratically convergent to zero. A powerful variant on false position is due to Ridders [8] has some very nice properties. First, is guaranteed to the iteration formula method never jumps out of

[^0]its brackets. Second, the convergence is quadratic. Since each iteration requires two function evaluations, the actual order of the method is $\sqrt{2}$, not 2 ; but this is still quite respectably superlinear: The number of significant digits in the answer approximately doubles with each two function evaluations. Third, taking out the function's "bend" via exponential (that is, ratio) factors, rather than via a polynomial technique (e.g., fitting a parabola), turns out to give an extraordinarily robust algorithm. In both reliability and speed, Ridders' method is generally competitive with the more highly developed and better established (but more complicated) method of van Wijngaarden, Dekker, and Brent [9].

II. Method of Regula Falsi

Interval search procedure (or bracketing methods, are methods starting with two values of x which bracket the root, $x=\xi$, and systematically reduce the interval while keeping the root trapped within the interval) is a family of several methods for obtaining an approximate solution to an equation $f(x)=0$. With Regula Falsi (false position) we begin with an interval $[a, b]$ in which $f(x)$ change its sign $(f(a) * f(b)<0)$. The linear interpolation is then used to find an approximate value of the true root ξ. We have

$$
x=\frac{a \cdot f(b)-b \cdot f(a)}{f(b)-f(a)}
$$

We can also derive the above equation considering the weighted mean (taking $|f(a)|,|f(b)|$ as weights).
We follows determining the subinterval $[a, x]$ or $[x, b]$, which contain the true root ξ by checking the sign of $f(x)$. If $f(x) \cdot f(a)<0$ the $[a, x]$ contain the root, and x becomes the new b] for the next iteration (as all iterative method, a sequence of approximations, $x_{1}, x_{2} \cdots, x_{n}$, is generated to get closer to the true root). On the other hand, if $f(x) \cdot f(b)<0$, $[x, b]$ contain the root, and x becomes the new $[a$ for the next iteration. The iterative process is repeated until one stopping criterion is attained. For example, the interaction is continued either one or both of the convergence criteria are satisfied

$$
|f(x)|<\varepsilon_{1} \text { or }\left|x_{n+1}-x_{n}\right|<\varepsilon
$$

where are preassigned small positive numbers (related precision).

Regula Falsi sometimes has lower order de convergence. This is because once an interval has been reach on which the
$f(x)$ is convex or concave, one of the end points is always retained. The method is often superlinear, but estimation of its exact order is not so easy [9].

III. A FAMILY OF iterative formulas

If the function $f(x)$ is continuous in the interval $[a, b]$ and if $f(a)$ and $f(b)$ have opposite signs, then at least one root $\mathrm{f}(\mathrm{x})$ lie in interval $[a, b]$ (the intermediate value theorem). The family of methods generates a sequence x_{i} that converges to the bracketed root ξ of the equation $f(x)=0$. In the family of methods, based on linear approximations, the sequence x_{i} is obtained through the recurrence formula:

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f\left(x_{k}\right)-f\left(x_{k}-1\right)} \cdot\left(x_{k}-x_{k-1}\right), \quad k=1,2,3, \ldots \tag{1}
\end{equation*}
$$

The $\left[x_{k-1}, f\left(x_{k-1}\right)\right]$ and $\left[x_{k}, f\left(x_{k}\right)\right]$ points are chosen so that $f\left(x_{k-1}\right)$ e $f\left(x_{k}\right)$ always have opposed signs, guaranteed $\xi \in\left[x_{k-1}, x_{k}\right]$. The calculated value $f\left(x_{k-1}\right)$ it is reduced by the factor $\phi\left[f\left(x_{k-1}\right), f\left(x_{k}\right), f\left(x_{k+1}\right)\right]$, see Table I $\left[f\left(x_{k-1}\right), f\left(x_{k}\right), f\left(x_{k+1}\right)\right] \longrightarrow[f a, f b, f x]$, in order to avoid the retention of a point as it happens in the it regula falsi method. In this way the straight line is drawn by a point no belonging the curve of $f(x)$. Should be mentioned the correspondences: Φ_{1} to Pegasus, Φ_{8} Illinois, and Φ_{12} Anderson \& Björk. All others nine Φ_{n} corresponding to new proposed methods.

TABLE I
REDUCTION FACTOR FOR EACH FAMILY MEMBER

\mathbf{n}	$\phi_{\mathbf{n}}(f a, f b, f x)$
1	$\frac{f a \cdot f b}{f b+f x}$
2	$\frac{f a-f b}{2}$
3	$\frac{f a-f x}{2+f x / f b}$
4	$\frac{f a-f x}{(1+f x / f b)^{2}}$
5	$\frac{f a-f x}{(1.5+f x / f b)^{2}}$
6	$\frac{f a-f x}{(2+f x / f b)^{2}}$
7	$\frac{f a+f x}{(2+f x / f b)^{2}}$
8	$\frac{f a}{2}$
9	$\frac{f a}{(1+f x / f b)^{2}}$
10	$\frac{f a-f x}{4}$
11	$\frac{f x \cdot f a}{f b+f x}$
12	$f a \cdot m$, $m=\left(1-\frac{f x}{f b}\right)$ else $m=1 / 2$

The algorithms are variants of the regula falsi method in which given a new estimate, the estimate which is replaced is the one for which the sign of the function is the same as the sign of the function for the new estimate and the ordinate associated with the other estimate is reduced. The algorithm's family is guaranteed to converge.

IV. Case studies

The following Scilab script implement the algorithms of regula falsi family. It includes some basic practicalities. First, we enter the function of nonlinear equation $f(x)=0$ (in line 2). Second, in line 11, the tolerance, maximum number of iterates and $f(x)=0$ "root exact" are used for loop exit. Third, in line 17 we write the reduction factor Φ_{n} for each family member (see Table I). Finally, call the procedure (line 28) and show the results: root, number of iterates and error code (line 29).

```
function y=f1(x)
y=(x+2)*(x+1)*(x-3)^3 // from Tables 2 and 4(ff from Table 4 case)
endfunction
function [x, It, Erro] = Pegasus_1(f, a, b, tol, ItMax)
fa=f(a);fb=f(b);
x=b;fx=fb;It=0;
while %T
    It=It+1;dx=-fx/(fb-fa) *(b-a);
    x=x+dx;fx=f(x);
        if abs(dx) < tol | It > ItMax | fx==0 then
            break
        end
        if fx*fb <0 then
            a=b;fa=fb;
        else
            fa=fa*fb/(fb+fx) // from Table 1 ( }\mp@subsup{\Phi}{1}{}\mathrm{ case )
        end
        b=x; fb=fx;
    end
end
if It > ItMax then
    Erro=1
else
Erro=0
end
endfunction
7.
28. [x, Iter, Error]= Pegasus_1( f1, 2.5 ,3.5, 1e-15,500);
29. [x, Iter, Error]
```


A. Case 1

Here we present the first numerical experiment. We tested all the problems listed in Table II. These nonlinear equations are well known (simple zeros). They are a series of published examples (see [5], [10], [11], [4], [3], etc.). Since the structures of the algorithms are the same, the number of iterations is used in the comparison. The Table III we list the total number of iterations for each individual problem. The factors of reduction $\Phi_{12}, \Phi_{4}, \Phi_{1}$, and Φ_{9} supplies the smallest total numbers of iterations, respectively.

B. Case 2

Now we present the second numerical experiment considering multiple roots (see Appendix). We tested all equations listed in Table IV with multiple roots and all its roots are real.

The family Regula falsi methods may not always work with satisfactory convergence speed. The performance will depend,

TABLE II
FIRST SET OF FUNCTIONS USED IN NUMERICAL EXPERIMENTS OF ROOT-FIND METHODS

k	$\mathrm{g}_{\mathrm{k}}(\mathbf{x})$	[a,b] ${ }^{1}$
1	$x^{3}-1$	[0.5, 1.5]
2	$x^{2}\left(x^{2} / 3+\sqrt{2} \cdot \sin (x)\right)-\sqrt{3} / 18$	[0.1, 1]
3	$11 x^{11}-1$	[0.1, 1]
4	$x^{3}+1$	$[-1.8,0]$
5	$x^{3}-2 x-5$	$[2,3]$
6	$\begin{aligned} & (n=5) \\ & 2 \cdot x \cdot e^{-n}+1-2 \cdot e^{-n \cdot x} \end{aligned}$	$[0,1]$
7	$\begin{aligned} & (n=10) \\ & 2 \cdot x \cdot e^{-n}+1-2 \cdot e^{-n \cdot x} \end{aligned}$	$[0,1]$
8	$\begin{aligned} & (n=20) \\ & 2 \cdot x \cdot e^{-n}+1-2 \cdot e^{-n \cdot x} \end{aligned}$	$[0,1]$
9	$\begin{aligned} & (n=5) \\ & {\left[1+(1-n)^{2}\right] \cdot x^{2}-(1-n \cdot x)^{2}} \end{aligned}$	$[0,1]$
10	$\begin{aligned} & (n=10) \\ & {\left[1+(1-n)^{2}\right] \cdot x^{2}-(1-n \cdot x)^{2}} \end{aligned}$	$[0,1]$
11	$\begin{aligned} & (n=20) \\ & {\left[1+(1-n)^{2}\right] \cdot x^{2}-(1-n \cdot x)^{2}} \end{aligned}$	$[0,1]$
12	$\begin{aligned} & (n=5) \\ & x^{2}-(1-x)^{n} \end{aligned}$	$[0,1]$
13	$\begin{aligned} & (n=10) \\ & x^{2}-(1-x)^{n} \end{aligned}$	$[0,1]$
14	$\begin{aligned} & (n=20) \\ & x^{2}-(1-x)^{n} \end{aligned}$	$[0,1]$
15	$\begin{aligned} & (n=5) \\ & {\left[1+(1-n)^{4}\right] \cdot x-(1-n \cdot x)^{4}} \end{aligned}$	$[0,1]$
16	$\begin{aligned} & (n=10) \\ & {\left[1+(1-n)^{4}\right] \cdot x-(1-n \cdot x)^{4}} \end{aligned}$	$[0,1]$
17	$\begin{aligned} & (n=20) \\ & {\left[1+(1-n)^{4}\right] \cdot x-(1-n \cdot x)^{4}} \end{aligned}$	$[0,1]$
18	$\begin{aligned} & (n=5) \\ & e^{-n \cdot x} \cdot(x-1)+x^{n} \end{aligned}$	$[0,1]$
19	$\begin{aligned} & (n=10) \\ & {\left[1+(1-n)^{4}\right] \cdot x-(1-n \cdot x)^{4}} \end{aligned}$	$[0,1]$
20	$\begin{aligned} & (n=20) \\ & {\left[1+(1-n)^{4}\right] \cdot x-(1-n \cdot x)^{4}} \end{aligned}$	$[0,1]$
21	$\begin{aligned} & (n=5) \\ & x^{2}+\sin (x / n)-1 / 4 \end{aligned}$	$[0,1]$
22	$\begin{aligned} & (n=10) \\ & x^{2}+\sin (x / n)-1 / 4 \end{aligned}$	$[0,1]$
23	$\begin{aligned} & (n=20) \\ & x^{2}+\sin (x / n)-1 / 4 \end{aligned}$	$[0,1]$

1 - Initial interval with $\xi \in[\mathbf{a}, \mathbf{b}]$.
among other things, if the function $f(x)$ can be computed with absolute error less than the x when x approaches of ξ. For multiple roots convergence is low (only linear). The factors of reduction Φ_{7}, Φ_{6}, and Φ_{10} supplies the smallest numbers of iterations, respectively, and are better than the Bisection algorithm. The application of Bisection algorithm uses $n=350$ iterates, deterministically, to reach $<10^{-15}$ of tolerance on diameters $\left\{b_{n}-a_{n}\right\}$ of isolated single/multiple root when we have $\left\{b_{0}-a_{0}\right\}=1$ initial.

TABLE III
The number of function evaluations with function $\mathbf{G}_{\mathbf{N}}$ and ROOT-FIND METHOD ϕ_{N}.

	$\phi_{\mathbf{n}}$					
$\mathbf{g}_{\mathbf{n}}$	$\phi_{\mathbf{1}}$	$\phi_{\mathbf{2}}$	$\phi_{\mathbf{3}}$	$\phi_{\mathbf{4}}$	$\phi_{\mathbf{5}}$	$\phi_{\mathbf{6}}$
$\mathbf{g}_{\mathbf{1}}$	8	9	10	8	10	11
$\mathbf{g}_{\mathbf{2}}$	11	13	12	11	9	14
$\mathbf{g}_{\mathbf{3}}$	14	15	14	14	15	18
$\mathbf{g}_{\mathbf{4}}$	9	11	11	9	10	12
$\mathbf{g}_{\mathbf{5}}$	8	9	9	8	9	9
$\mathbf{g}_{\mathbf{6}}$	8	10	10	9	10	11
$\mathbf{g}_{\mathbf{7}}$	9	11	12	9	12	11
$\mathbf{g}_{\mathbf{8}}$	9	12	11	10	11	13
$\mathbf{g}_{\mathbf{9}}$	8	10	9	9	10	11
$\mathbf{g}_{\mathbf{1 0}}$	8	11	9	8	10	10
$\mathbf{g}_{\mathbf{1 1}}$	7	11	9	8	9	9
$\mathbf{g}_{\mathbf{1 2}}$	8	10	9	8	10	10
$\mathbf{g}_{\mathbf{1 3}}$	10	11	10	10	11	11
$\mathbf{g}_{\mathbf{1 4}}$	11	13	12	11	12	14
$\mathbf{g}_{\mathbf{1 5}}$	7	13	8	7	8	7
$\mathbf{g}_{\mathbf{1 6}}$	6	17	6	7	7	7
$\mathbf{g}_{\mathbf{1 7}}$	6	20	6	6	6	6
$\mathbf{g}_{\mathbf{1 8}}$	9	9	9	9	9	9
$\mathbf{g}_{\mathbf{1}}$	13	14	12	10	11	12
$\mathbf{g}_{\mathbf{2 0}}$	21	21	17	15	15	12
$\mathbf{g}_{\mathbf{2}}$	8	8	10	8	10	11
$\mathbf{g}_{\mathbf{2}}$	8	9	10	8	10	11
$\mathbf{g}_{\mathbf{2 3}}$	8	9	10	8	10	11
$\Sigma \mathbf{g}_{\mathbf{n}}$	$\mathbf{2 1 4}$	$\mathbf{2 7 6}$	$\mathbf{2 3 5}$	$\mathbf{2 1 0}$	$\mathbf{2 3 4}$	$\mathbf{2 5 0}$

	$\phi_{\mathbf{n}}$					
$\mathbf{g}_{\mathbf{n}}$	$\phi_{\mathbf{7}}$	$\phi_{\mathbf{8}}$	$\phi_{\mathbf{9}}$	$\phi_{\mathbf{1 0}}$	$\phi_{\mathbf{1 1}}$	$\phi_{\mathbf{1 2}}$
$\mathbf{g}_{\mathbf{1}}$	11	10	8	9	11	8
$\mathbf{g}_{\mathbf{2}}$	14	12	12	13	15	11
$\mathbf{g}_{\mathbf{3}}$	18	15	13	16	19	22
$\mathbf{g}_{\mathbf{4}}$	13	11	9	11	13	10
$\mathbf{g}_{\mathbf{5}}$	9	9	8	9	11	7
$\mathbf{g}_{\mathbf{6}}$	14	10	9	11	13	8
$\mathbf{g}_{\mathbf{7}}$	16	11	11	11	14	11
$\mathbf{g}_{\mathbf{8}}$	16	10	11	12	10	11
$\mathbf{g}_{\mathbf{9}}$	11	10	10	11	11	8
$\mathbf{g}_{\mathbf{1 0}}$	11	8	9	10	10	7
$\mathbf{g}_{\mathbf{1 1}}$	10	7	8	9	10	6
$\mathbf{g}_{\mathbf{1 2}}$	11	8	9	10	13	8
$\mathbf{g}_{\mathbf{1 3}}$	13	10	10	12	13	9
$\mathbf{g}_{\mathbf{1 4}}$	14	11	11	11	14	11
$\mathbf{g}_{\mathbf{1 5}}$	8	7	7	11	8	7
$\mathbf{g}_{\mathbf{1 6}}$	7	7	7	13	10	6
$\mathbf{g}_{\mathbf{1 7}}$	6	7	6	16	7	6
$\mathbf{g}_{\mathbf{1 8}}$	9	9	9	9	12	7
$\mathbf{g}_{\mathbf{1 9}}$	12	13	10	13	15	8
$\mathbf{g}_{\mathbf{2 0}}$	12	21	15	17	22	9
$\mathbf{g}_{\mathbf{2 1}}$	11	11	8	10	11	8
$\mathbf{g}_{\mathbf{2}}$	11	10	9	10	11	8
$\mathbf{g}_{\mathbf{2 3}}$	11	10	9	10	11	8
$\Sigma \mathbf{g}_{\mathbf{n}}$	$\mathbf{2 6 8}$	$\mathbf{2 3 7}$	$\mathbf{2 1 8}$	$\mathbf{2 6 5}$	$\mathbf{2 8 4}$	$\mathbf{2 0 4}$

V. Conclusion

We presented a class of regula falsi methods for finding simple zeros of nonlinear equations. In this paper, we have a different reduction factor Φ_{n} for of each member of family of

TABLE IV
EXAMPLE FUNCTIONS FOR NUMERICAL COMPARISONS OF ROOT-FIND METHODS

\mathbf{n}	$\mathbf{f}_{\mathbf{n}} \mathbf{(x)}$	$[\mathbf{a , b}]^{1}$
1	$(x+2) \cdot(x+1) \cdot(x-3)^{3}$	$[2.5,3.5]$
2	$(x-4)^{5} \cdot \ln (x)$	$[3.5,4.5]$
3	$(\sin (x)-x / 4)^{3}$	$[2,3]$
4	$(81-p *(108-p *(54-p *(12-p)))) * \operatorname{sign}(p-3)$ where $p=x+1.11111$	$[1,2]$
5	$\sin \left((x-7.143)^{3}\right)$	$[7,8]$
6	$\exp \left((x-3)^{5}\right)-1$	$[2.5,3.5]$
7	$\exp \left((x-3)^{5}\right)-\exp (x-1)$	$[4,5]$

1 - Initial interval with $\xi \in[\mathbf{a}, \mathrm{b}]$.

TABLE V
The number evaluations of function $\mathbf{F}_{\mathbf{N}}$ With the root-find METHOD USING ϕ_{N}.

	$\phi_{\mathbf{n}}$					
	$\mathbf{f}_{\mathbf{n}}$	$\phi_{\mathbf{1}}$	$\phi_{\mathbf{2}}$	$\phi_{\mathbf{3}}$	$\phi_{\mathbf{4}}$	$\phi_{\mathbf{5}}$
$\phi_{\mathbf{6}}$						
$\mathbf{f}_{\mathbf{1}}$	149	96	81	101	63	41
$\mathbf{f}_{\mathbf{2}}$	272	186	149	179	114	82
$\mathbf{f}_{\mathbf{3}}$	150	96	81	101	64	42
$\mathbf{f}_{\mathbf{4}}$	52	33	32	35	18	21
$\mathbf{f}_{\mathbf{5}}$	150	97	80	100	65	41
$\mathbf{f}_{\mathbf{6}}$	45	38	28	27	20	16
$\mathbf{f}_{\mathbf{7}}$	50	50	40	31	32	32
$\mathbf{\Sigma} \mathbf{f}_{\mathbf{n}}$	$\mathbf{8 6 8}$	$\mathbf{5 9 6}$	$\mathbf{4 9 1}$	$\mathbf{5 7 4}$	$\mathbf{3 7 6}$	$\mathbf{2 7 5}$

	$\phi_{\mathbf{n}}$						
$\mathbf{f}_{\mathbf{n}}$	$\phi_{\mathbf{7}}$	$\phi_{\mathbf{8}}$	$\phi_{\mathbf{9}}$	$\phi_{\mathbf{1 0}}$	$\phi_{\mathbf{1 1}}$	$\phi_{\mathbf{1 2}}$	
$\mathbf{f}_{\mathbf{1}}$	43	95	101	50	70	113	
$\mathbf{f}_{\mathbf{2}}$	82	185	179	96	85	194	
$\mathbf{f}_{\mathbf{3}}$	42	95	102	50	74	115	
$\mathbf{f}_{\mathbf{4}}$	17	36	37	19	28	35	
$\mathbf{f}_{\mathbf{5}}$	42	98	103	50	68	113	
$\mathbf{f}_{\mathbf{6}}$	16	38	28	20	27	22	
$\mathbf{f}_{\mathbf{7}}$	31	51	31	37	55	57	
$\mathbf{\Sigma} \mathbf{f}_{\mathbf{n}}$	$\mathbf{2 7 3}$	$\mathbf{5 9 8}$	$\mathbf{5 8 1}$	$\mathbf{3 2 2}$	$\mathbf{4 0 7}$	$\mathbf{6 4 9}$	

methods. The iterations $\left\{x_{n}\right\}$ of the methods have a superlinear convergence for finding simple zeros of nonlinear equations, and the sequence of diameters $\left\{b_{n}-a_{n}\right\}$ also. In case study 1 , numerical experiments show that the new method, with reduction factor Φ_{4}, is effective and comparable to well-known methods, such as the classical Pegasus, with reduction factor Φ_{1}, and Illinois, with reduction factor Φ_{8}, methods. In case study 2 , numerical experiments show that the new methods, with reduction factors Φ_{7}, Φ_{6}, and Φ_{10}, are effective and better than the classical Bisection method for finding multiple zeros of nonlinear equations. Asymptotic convergence studies for the new algorithms can be conducted. In each case, we can follow the same type of analysis used to Pegasus, Illinois and Anderson \& Björk methods.

Appendix

Definition 1: Multiplicity of a zero of a function

Let $f:[a, b] \in \mathbb{R} \longrightarrow \mathbb{R}$, and let $\xi \in[a, b]$ be a zero of f, i.e. a point such that $f(\xi)=0$. The point ξ is said a zero of multiplicity k of f if there exist a real number \mathscr{L} such that

$$
\lim _{x \rightarrow \xi} \frac{|f(x)|}{|x-\xi|^{k}}=\mathscr{L}
$$

Examples from Table IV:

1) $f_{1}(x)=(x+2) \cdot(x+1) \cdot(x-3)^{3}$
$\lim _{x \rightarrow 3} \frac{\left|(x+2) \cdot(x+1) \cdot(x-3)^{3}\right|}{|(x-3)|^{3}}=20$, it follows that 3 is a zero of multiplicity 3 .
2) $f_{2}(x)=(x-4)^{5} \cdot \ln (x)$
$\lim _{x \rightarrow 4} \frac{\left|(x-4)^{5} \cdot \ln (x)\right|}{|(x-4)|^{5}}=\ln (4)$, it follows that 4 is a zero of multiplicity 5 .
3) $f_{5}(x)=\sin \left[(x-7.143)^{3}\right]$
$\lim _{x \rightarrow 7.143} \frac{\left|\sin \left[(x-7.143)^{3}\right]\right|}{|(x-7.143)|^{3}}=1$, it follows that 7.143 is a zero of multiplicity 3 .
4) $f_{7}(x)=\exp \left((x-3)^{5}\right)-1$
$\lim _{x \rightarrow 3} \frac{\left|\exp \left((x-3)^{5}\right)-1\right|}{|(x-3)|^{5}}=1$, it follows that 3 is a zero of multiplicity 5 .

References

[1] E. Halley: A new and general method of finding the root equations. Philos. Trans. Roy. Soc. London, 18 (1694)
[2] G. Dahlquist and \AA. Björck: Numerical Methods in Scientific Computing, Volume 1. SIAM - Society for Industrial and Applied Mathematics , (2008)
[3] M. Dowell and D. Jarratt: A modified regula falsi method for computing the root of an equation. BIT, $11: 168-174$, (1971)
[4] M. Dowell and D. Jarratt: The "Pegasus" method for computing the root of an equation. BIT, 12 : 503-508, (1972)
[5] X. Wu, Z. Shen and J. Xia: An improved regula falsi method with quadratic convergence of both diameter and point for enclosing simple zeros of nonlinear equations. Applied Mathematics and Computation, 144 : 381-388, (2003)
[6] J. Chen and W. Li: An exponential regula falsi method for solving nonlinear equations. Numerical Algorithms 41: 327-338, (2006)
[7] J. Chen and W. Li: An improved exponential regula falsi methods with quadratic convergence of both diameter and point for solving nonlinear equations. Applied Numerical Mathematics 57 : 80-88, (2007)
[8] C.J.F. Ridders: A New Algorithm for Computing a Single Root of a Real Continuous Function. IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979-980, (1979)
[9] W. H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery: Numerical Recipes: The art of scientific computing. Cambridge University Press, Third Edition, (2007)
[10] G. Alefeld, F.A. Potra: Some efficient methods for enclosing simple zeroes of nonlinear equations. BIT 32:334-344, (1992)
[11] G. Alefeld, F.A. Potra, Y.X. Shi: On enclosing simple roots of nonlinear equations. Math. Comput. 61:733-744, (1993)

[^0]: ${ }^{1}$ Edmund Halley (1656-1742), an English astronomer. Halley's Comet or Comet Halley (officially designated 1P/Halley) was only recognized as a periodic comet in the 18th century when its orbit was computed by Edmond Halley, after whom it is named, is the most famous of the periodic comets, and is visible from Earth every 75 to 76 years.

