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Abstract—A family of regula falsi methods for finding a root
ξ of a nonlinear equation f(x)=0 in the interval [a,b] is studied
in this paper. The Illinois, Pegasus, Anderson & Björk and more
nine new proposed methods have been tested on a series of
examples. The new methods, inspired on Pegasus procedure,
are pedagogically important algorithms. The numerical results
empirically show that some of new methods are very effective.

Index Terms—regula ralsi, root finding, nonlinear equations.

I. INTRODUCTION

Is not so hard the design of heuristic procedures to solve a
problem using numerical algorithms. The main drawback of
this attitude is that you can be rediscovering the wheel. The
famous Halley’s iteration method [1] 1, have the distinction of
being the most frequently rediscovered iterative method [2].
The Halley iteration formula is

xn+1 = xn− f (xn)

f ′(xn)

(
1− f (xn) f ′′(xn)

2 ⋅ f ′(xn)2

)−1

The term in brackets is the correction of the Newton-
Raphson method. Halley’s method will yield cubic conver-
gence at simple zeros of f (x).

An attempt to create an useful numerical algorithm is try to
improve the characteristics of already existent algorithm. The
methods of Illinois [3] and Pegasus [4] are typical samples
of improvements for the Regula Falsi method (false-position
method) in order to solve fixed point retention problem.
This is because once an interval has been reached on which
the f (x) is (monotonically) increasing or decreasing, one of
end points is always retained. Xinyuan Wu, Zuhe Shen and
Jianlin Xia [5] stated have developed a new root finding with
global convergence for enclosing simple zeros x∗ of nonlinear
equation, which improves regula falsi method such that both
the sequence of diameters (bn−an) and the iterative sequence
(xn− x∗) are quadratically convergent to zero. Jinhai Chen and
Weiguo Li [6], [7] give a class of regula falsi iterative formulas
for solving nonlinear equations where both the sequences
of diameters and iterative points sequence are quadratically
convergent to zero. A powerful variant on false position is
due to Ridders [8] has some very nice properties. First, is
guaranteed to the iteration formula method never jumps out of

1Edmund Halley (1656-1742), an English astronomer. Halley’s Comet or
Comet Halley (officially designated 1P/Halley) was only recognized as a
periodic comet in the 18th century when its orbit was computed by Edmond
Halley, after whom it is named , is the most famous of the periodic comets,
and is visible from Earth every 75 to 76 years.

its brackets. Second, the convergence is quadratic. Since each
iteration requires two function evaluations, the actual order of
the method is

√
2, not 2; but this is still quite respectably

superlinear: The number of significant digits in the answer
approximately doubles with each two function evaluations.
Third, taking out the function’s “bend” via exponential (that
is, ratio) factors, rather than via a polynomial technique (e.g.,
fitting a parabola), turns out to give an extraordinarily robust
algorithm. In both reliability and speed, Ridders’ method is
generally competitive with the more highly developed and
better established (but more complicated) method of van
Wijngaarden, Dekker, and Brent [9].

II. METHOD OF REGULA FALSI

Interval search procedure (or bracketing methods, are meth-
ods starting with two values of x which bracket the root, x= ξ ,
and systematically reduce the interval while keeping the root
trapped within the interval) is a family of several methods for
obtaining an approximate solution to an equation f (x) = 0.
With Regula Falsi (false position) we begin with an interval
[a,b] in which f (x) change its sign ( f (a) ∗ f (b) < 0). The
linear interpolation is then used to find an approximate value
of the true root ξ . We have

x =
a ⋅ f (b)−b ⋅ f (a)

f (b)− f (a)

We can also derive the above equation considering the
weighted mean (taking ∣ f (a)∣, ∣ f (b)∣ as weights).

We follows determining the subinterval [a,x] or [x,b],
which contain the true root ξ by checking the sign of f (x).
If f (x) ⋅ f (a) < 0 the [a,x] contain the root, and x becomes
the new b] for the next iteration (as all iterative method, a
sequence of approximations, x1,x2 ⋅ ⋅ ⋅ ,xn, is generated to get
closer to the true root). On the other hand, if f (x) ⋅ f (b)< 0 ,
[x,b] contain the root, and x becomes the new [a for the next
iteration. The iterative process is repeated until one stopping
criterion is attained. For example, the interaction is continued
either one or both of the convergence criteria are satisfied

∣ f (x)∣< ε1 or ∣xn+1− xn∣< ε

where are preassigned small positive numbers (related preci-
sion).

Regula Falsi sometimes has lower order de convergence.
This is because once an interval has been reach on which the ___________________________________ 
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f(x) is convex or concave, one of the end points is always
retained. The method is often superlinear, but estimation of
its exact order is not so easy [9].

III. A FAMILY OF ITERATIVE FORMULAS

If the function f (x) is continuous in the interval [a,b] and
if f (a) and f (b) have opposite signs, then at least one root
f(x) lie in interval [a,b] (the intermediate value theorem). The
family of methods generates a sequence xi that converges to
the bracketed root ξ of the equation f (x) = 0. In the family
of methods, based on linear approximations, the sequence xi

is obtained through the recurrence formula:

xk+1 = xk− f (xk)

f (xk)− f (xk−1)
⋅ (xk− xk−1), k = 1,2,3, . . .

(1)
The [xk−1, f (xk−1)] and [xk, f (xk)] points are chosen so

that f (xk−1) e f (xk) always have opposed signs, guaran-
teed ξ ∈ [xk−1,xk]. The calculated value f (xk−1) it is re-
duced by the factor φ [ f (xk−1), f (xk), f (xk+1)], see Table I
[ f (xk−1), f (xk), f (xk+1)]−→ [ f a, f b, f x], in order to avoid the
retention of a point as it happens in the it regula falsi method.
In this way the straight line is drawn by a point no belonging
the curve of f (x). Should be mentioned the correspondences:
Φ1 to Pegasus, Φ8 Illinois, and Φ12 Anderson & Björk. All
others nine Φn corresponding to new proposed methods.

TABLE I
REDUCTION FACTOR FOR EACH FAMILY MEMBER

n φn( f a, f b, f x)

1
f a ⋅ f b
f b+ f x

2
f a− f b

2
3

f a− f x
2+ f x/ f b

4
f a− f x

(1+ f x/ f b)2

5
f a− f x

(1.5+ f x/ f b)2

6
f a− f x

(2+ f x/ f b)2

7
f a+ f x

(2+ f x/ f b)2

8
f a
2

9
f a

(1+ f x/ f b)2

10
f a− f x

4
11

f x ⋅ f a
f b+ f x

12

f a ⋅m,

m =
(
1− f x

f b

)
i f positive

else m = 1/2

The algorithms are variants of the regula falsi method in
which given a new estimate, the estimate which is replaced
is the one for which the sign of the function is the same as
the sign of the function for the new estimate and the ordinate
associated with the other estimate is reduced. The algorithm’s
family is guaranteed to converge.

IV. CASE STUDIES

The following Scilab script implement the algorithms of
regula falsi family. It includes some basic practicalities. First,
we enter the function of nonlinear equation f (x) = 0 (in line
2). Second, in line 11, the tolerance, maximum number of
iterates and f (x) = 0 “root exact” are used for loop exit.
Third, in line 17 we write the reduction factor Φn for each
family member (see Table I). Finally, call the procedure (line
28) and show the results: root, number of iterates and error
code (line 29).

1. function y=f1(x)
2. y=(x+2)*(x+1)*(x-3)^3 // from Tables 2 and 4 ( f1 from Table 4 case)
3. endfunction
4.
5. function [x, It, Erro] = Pegasus_1(f, a, b, tol, ItMax)
6. fa=f(a);fb=f(b);
7. x=b;fx=fb;It=0;
8. while %T
9. It=It+1;dx=-fx/(fb-fa)*(b-a);
10. x=x+dx;fx=f(x);
11. if abs(dx) < tol | It > ItMax | fx==0 then
12. break
13. end
14. if fx*fb <0 then
15. a=b;fa=fb;
16. else
17. fa=fa*fb/(fb+fx) // from Table 1 ( Φ1 case )
18. end
19. b=x; fb=fx;
20. end
21. if It > ItMax then
22. Erro=1
23. else
24. Erro=0
25. end
26. endfunction
27.
28. [x, Iter, Error]= Pegasus_1( f1, 2.5 ,3.5, 1e-15,500);
29. [x, Iter, Error]

A. Case 1

Here we present the first numerical experiment. We tested
all the problems listed in Table II. These nonlinear equations
are well known (simple zeros). They are a series of published
examples (see [5], [10], [11], [4], [3], etc.). Since the structures
of the algorithms are the same, the number of iterations is used
in the comparison. The Table III we list the total number of
iterations for each individual problem. The factors of reduction
Φ12, Φ4, Φ1, and Φ9 supplies the smallest total numbers of
iterations, respectively.

B. Case 2

Now we present the second numerical experiment consid-
ering multiple roots (see Appendix). We tested all equations
listed in Table IV with multiple roots and all its roots are real.

The family Regula falsi methods may not always work with
satisfactory convergence speed. The performance will depend,



TABLE II
FIRST SET OF FUNCTIONS USED IN NUMERICAL EXPERIMENTS OF

ROOT-FIND METHODS

k gk(x) [a,b]1

1 x3−1 [0.5, 1.5]
2 x2(x2/3+

√
2 ⋅ sin(x))−√3/18 [0.1, 1]

3 11x11−1 [0.1, 1]
4 x3+1 [−1.8, 0]
5 x3−2x−5 [2, 3]

6
(n = 5)
2 ⋅ x ⋅ e−n +1−2 ⋅ e−n⋅x [0, 1]

7
(n = 10)
2 ⋅ x ⋅ e−n +1−2 ⋅ e−n⋅x [0, 1]

8
(n = 20)
2 ⋅ x ⋅ e−n +1−2 ⋅ e−n⋅x [0, 1]

9
(n = 5)[
1+(1−n)2

] ⋅ x2− (1−n ⋅ x)2 [0, 1]

10
(n = 10)[
1+(1−n)2

] ⋅ x2− (1−n ⋅ x)2 [0, 1]

11
(n = 20)[
1+(1−n)2

] ⋅ x2− (1−n ⋅ x)2 [0, 1]

12
(n = 5)
x2− (1− x)n [0, 1]

13
(n = 10)
x2− (1− x)n [0, 1]

14
(n = 20)
x2− (1− x)n [0, 1]

15
(n = 5)[
1+(1−n)4

] ⋅ x− (1−n ⋅ x)4 [0, 1]

16
(n = 10)[
1+(1−n)4

] ⋅ x− (1−n ⋅ x)4 [0, 1]

17
(n = 20)[
1+(1−n)4

] ⋅ x− (1−n ⋅ x)4 [0, 1]

18
(n = 5)
e−n⋅x ⋅ (x−1)+ xn [0, 1]

19
(n = 10)[
1+(1−n)4

] ⋅ x− (1−n ⋅ x)4 [0, 1]

20
(n = 20)[
1+(1−n)4

] ⋅ x− (1−n ⋅ x)4 [0, 1]

21
(n = 5)
x2+ sin(x/n)−1/4

[0, 1]

22
(n = 10)
x2+ sin(x/n)−1/4

[0, 1]

23
(n = 20)
x2+ sin(x/n)−1/4

[0, 1]

1 - Initial interval with ξ ∈ [a,b].

among other things, if the function f (x) can be computed with
absolute error less than the x when x approaches of ξ . For
multiple roots convergence is low (only linear). The factors
of reduction Φ7, Φ6, and Φ10 supplies the smallest numbers
of iterations, respectively, and are better than the Bisection
algorithm. The application of Bisection algorithm uses n= 350
iterates, deterministically, to reach < 10−15 of tolerance on
diameters {bn−an} of isolated single/multiple root when we
have {b0−a0}= 1 initial.

TABLE III
THE NUMBER OF FUNCTION EVALUATIONS WITH FUNCTION GN AND

ROOT-FIND METHOD φN .

φn
gn φ1 φ2 φ3 φ4 φ5 φ6
g1 8 9 10 8 10 11
g2 11 13 12 11 9 14
g3 14 15 14 14 15 18
g4 9 11 11 9 10 12
g5 8 9 9 8 9 9
g6 8 10 10 9 10 11
g7 9 11 12 9 12 11
g8 9 12 11 10 11 13
g9 8 10 9 9 10 11
g10 8 11 9 8 10 10
g11 7 11 9 8 9 9
g12 8 10 9 8 10 10
g13 10 11 10 10 11 11
g14 11 13 12 11 12 14
g15 7 13 8 7 8 7
g16 6 17 6 7 7 7
g17 6 20 6 6 6 6
g18 9 9 9 9 9 9
g19 13 14 12 10 11 12
g20 21 21 17 15 15 12
g21 8 8 10 8 10 11
g22 8 9 10 8 10 11
g23 8 9 10 8 10 11
Σgn 214 276 235 210 234 250

φn
gn φ7 φ8 φ9 φ10 φ11 φ12
g1 11 10 8 9 11 8
g2 14 12 12 13 15 11
g3 18 15 13 16 19 22
g4 13 11 9 11 13 10
g5 9 9 8 9 11 7
g6 14 10 9 11 13 8
g7 16 11 11 11 14 11
g8 16 10 11 12 10 11
g9 11 10 10 11 11 8
g10 11 8 9 10 10 7
g11 10 7 8 9 10 6
g12 11 8 9 10 13 8
g13 13 10 10 12 13 9
g14 14 11 11 11 14 11
g15 8 7 7 11 8 7
g16 7 7 7 13 10 6
g17 6 7 6 16 7 6
g18 9 9 9 9 12 7
g19 12 13 10 13 15 8
g20 12 21 15 17 22 9
g21 11 11 8 10 11 8
g22 11 10 9 10 11 8
g23 11 10 9 10 11 8
Σgn 268 237 218 265 284 204

V. CONCLUSION

We presented a class of regula falsi methods for finding
simple zeros of nonlinear equations. In this paper, we have a
different reduction factor Φn for of each member of family of



TABLE IV
EXAMPLE FUNCTIONS FOR NUMERICAL COMPARISONS OF ROOT-FIND

METHODS

n fn(x) [a,b]1

1 (x+2) ⋅ (x+1) ⋅ (x−3)3 [2.5, 3.5]
2 (x−4)5 ⋅ ln(x) [3.5, 4.5]
3 (sin(x)− x/4)3 [2, 3]

4
(81− p∗ (108− p∗ (54− p∗ (12− p))))∗ sign(p−3)
where p = x+1.11111 [1, 2]

5 sin((x−7.143)3) [7, 8]
6 exp((x−3)5)−1 [2.5, 3.5]
7 exp((x−3)5)− exp(x−1) [4, 5]

1 - Initial interval with ξ ∈ [a,b].

TABLE V
THE NUMBER EVALUATIONS OF FUNCTION FN WITH THE ROOT-FIND

METHOD USING φN .

φn
fn φ1 φ2 φ3 φ4 φ5 φ6
f1 149 96 81 101 63 41
f2 272 186 149 179 114 82
f3 150 96 81 101 64 42
f4 52 33 32 35 18 21
f5 150 97 80 100 65 41
f6 45 38 28 27 20 16
f7 50 50 40 31 32 32

Σfn 868 596 491 574 376 275

φn
fn φ7 φ8 φ9 φ10 φ11 φ12
f1 43 95 101 50 70 113
f2 82 185 179 96 85 194
f3 42 95 102 50 74 115
f4 17 36 37 19 28 35
f5 42 98 103 50 68 113
f6 16 38 28 20 27 22
f7 31 51 31 37 55 57

Σfn 273 598 581 322 407 649

methods. The iterations {xn} of the methods have a superlinear
convergence for finding simple zeros of nonlinear equations,
and the sequence of diameters {bn−an} also. In case study
1, numerical experiments show that the new method, with
reduction factor Φ4, is effective and comparable to well-known
methods, such as the classical Pegasus, with reduction factor
Φ1 , and Illinois, with reduction factor Φ8, methods. In case
study 2, numerical experiments show that the new methods,
with reduction factors Φ7, Φ6, and Φ10, are effective and better
than the classical Bisection method for finding multiple zeros
of nonlinear equations. Asymptotic convergence studies for
the new algorithms can be conducted. In each case, we can
follow the same type of analysis used to Pegasus, Illinois and
Anderson & Björk methods.

APPENDIX

Definition 1: Multiplicity of a zero of a function

Let f : [a, b] ∈ ℝ−→ ℝ, and let ξ ∈ [a, b] be a zero of f ,
i.e. a point such that f (ξ ) = 0. The point ξ is said a zero of
multiplicity k of f if there exist a real number L such that

lim
x→ξ

∣ f (x)∣
∣x−ξ ∣k

= L

Examples from Table IV:

1) f1(x) = (x+2) ⋅ (x+1) ⋅ (x−3)3

lim
x→3

∣∣(x+2) ⋅ (x+1) ⋅ (x−3)3
∣∣

∣(x−3)∣3 = 20, it follows that 3 is

a zero of multiplicity 3.
2) f2(x) = (x−4)5 ⋅ ln(x)

lim
x→4

∣∣(x−4)5 ⋅ ln(x)∣∣
∣(x−4)∣5 = ln(4), it follows that 4 is a zero

of multiplicity 5.
3) f5(x) = sin[(x−7.143)3]

lim
x→7.143

∣∣sin[(x−7.143)3]
∣∣

∣(x−7.143)∣3 = 1, it follows that 7.143 is a

zero of multiplicity 3.
4) f7(x) = exp((x−3)5)−1

lim
x→3

∣∣exp((x−3)5)−1
∣∣

∣(x−3)∣5 = 1, it follows that 3 is a zero

of multiplicity 5.
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